Знайти коріння рівняння з модулем онлайн. Як вирішувати рівняння із модулем: основні правила. Змінна як під модулем, так і поза модулем

У цій статті ми детально розберемо модуль числа. Ми дамо різні визначення модуля числа, введемо позначення та наведемо графічні ілюстрації. При цьому розглянемо різні прикладизнаходження модуля числа за визначенням. Після цього ми перерахуємо та обґрунтуємо основні властивості модуля. Наприкінці статті поговоримо про те, як визначається та перебуває модуль комплексного числа.

Навігація на сторінці.

Модуль числа – визначення, позначення та приклади

Спочатку введемо позначення модуля числа. Модуль числа a будемо записувати як , тобто, ліворуч і праворуч від числа ставитимемо вертикальні рисочки, що утворюють знак модуля. Наведемо кілька прикладів. Наприклад, модуль −7 можна записати як ; модуль 4,125 записується як, а модуль має запис виду.

Наступне визначення модуля відноситься до , а отже, і до , і до цілих, і до раціональних, і до ірраціональних чисел, як до частин множини дійсних чисел. Про модуль комплексного числа ми поговоримо в .

Визначення.

Модуль числа a- Це або саме число a, якщо a - позитивне число, або число -a, протилежне числу a, якщо a - негативне число, або 0, якщо a = 0.

Озвучене визначення модуля числа часто записують у такому вигляді , цей запис означає, що , якщо a>0 , якщо a=0 , і , якщо a<0 .

Запис можна представити у більш компактній формі . Цей запис означає, що , якщо (a більше або дорівнює 0 ), і якщо a<0 .

Також має місце та запис . Тут окремо слід пояснити випадок, коли a = 0. І тут маємо , але −0=0 , оскільки нуль вважають числом, яке протилежне себе.

Наведемо приклади знаходження модуля числаза допомогою озвученого визначення. Наприклад знайдемо модулі чисел 15 і . Почнемо з перебування. Оскільки число 15 – позитивне, його модуль за визначенням дорівнює самому цьому числу, тобто, . А чому дорівнює модуль числа? Оскільки - негативне число, його модуль дорівнює числу, протилежному числу , тобто, числу . Таким чином, .

На закінчення цього пункту наведемо один висновок, який дуже зручно застосовувати практично при знаходженні модуля числа. З визначення модуля числа випливає, що модуль числа дорівнює числу під знаком модуля без урахування його знака, та якщо з розглянутих вище прикладів це дуже чітко видно. Озвучене твердження пояснює, чому модуль числа ще називають абсолютною величиною числа. Так модуль числа та абсолютна величина числа – це те саме.

Модуль числа як відстань

Геометрично модуль числа можна інтерпретувати як відстань. Наведемо визначення модуля числа через відстань.

Визначення.

Модуль числа a– це відстань від початку відліку на координатній прямій до точки, що відповідає числу a.

Це визначення узгоджується з визначенням модуля числа, даного у першому пункті. Пояснимо цей момент. Відстань від початку відліку до точки, якій відповідає позитивне число, дорівнює цьому числу. Нулю відповідає початок відліку, тому відстань від початку відліку до точки з координатою 0 дорівнює нулю (не потрібно відкладати жодного одиничного відрізка і жодного відрізка, що становить якусь частку одиничного відрізка, щоб від точки O потрапити до точки з координатою 0). Відстань від початку відліку до точки з негативною координатою дорівнює числу, протилежному координаті даної точки, оскільки дорівнює відстані від початку координат до точки, координатою якої є протилежне число.

Наприклад, модуль числа 9 дорівнює 9 так як відстань від початку відліку до точки з координатою 9 дорівнює дев'яти. Наведемо приклад. Точка з координатою −3,25 знаходиться від точки O на відстані 3,25 , тому .

Озвучене визначення модуля числа є окремим випадком визначення модуля різниці двох чисел.

Визначення.

Модуль різниці двох чисел a і b дорівнює відстані між точками координатної прямої з координатами a і b.


Тобто, якщо дані точки на координатній прямій A(a) і B(b) , то відстань від точки A до точки B дорівнює модулю різниці чисел a і b. Якщо в якості точки взяти точку O (початок відліку), то ми отримаємо визначення модуля числа, наведене на початку цього пункту.

Визначення модуля числа через арифметичний квадратний корінь

Іноді зустрічається визначення модуля через арифметичний квадратний корінь.

Наприклад обчислимо модулі чисел −30 і підставі цього визначення. Маємо. Аналогічно обчислюємо модуль двох третіх: .

Визначення модуля числа через арифметичний квадратний корінь також узгоджується з визначенням у першому пункті цієї статті. Покажемо це. Нехай a – позитивне число, у своїй число −a – негативне. Тоді і якщо ж a = 0 , то .

Властивості модуля

Модулю притаманний ряд характерних результатів - властивості модуля. Зараз ми наведемо основні і найчастіше використовувані їх. При обґрунтуванні цих властивостей ми спиратимемося на визначення модуля числа через відстань.

    Почнемо з самої очевидної якості модуля – модуль числа не може бути негативним числом. У літерному вигляді ця властивість має запис виду для будь-якого числа a. Це властивість дуже легко довести: модуль числа є відстань, а відстань не може виражатися негативним числом.

    Переходимо до наступного властивості модуля. Модуль числа дорівнює нулю і тоді, коли це число є нуль. Модуль нуля є нуль за визначенням. Нулю відповідає початок відліку, ніяка інша точка на координатній прямій нулю не відповідає, тому що кожному дійсному числу поставлена ​​у відповідність єдина точка на координатній прямій. З цієї причини будь-якому числу, відмінному від нуля, відповідає точка, відмінна від початку отсчета. А відстань від початку відліку до будь-якої точки, відмінної від точки O, не дорівнює нулю, так як відстань між двома точками дорівнює нулю тоді і тільки тоді, коли ці точки збігаються. Наведені міркування доводять, що нулю дорівнює лише модуль нуля.

    Йдемо далі. Протилежні числа мають рівні модулі, тобто для будь-якого числа a . Дійсно, дві точки на координатній прямій, координатами яких є протилежні числа, знаходяться на однаковій відстані від початку відліку, отже, модулі протилежних чисел рівні.

    Наступна властивість модуля така: модуль добутку двох чисел дорівнює добутку модулів цих чисел, тобто, . За визначенням модуль добутку чисел a і b дорівнює або a b, якщо , або −(a b) , якщо . З правил множення дійсних чисел слідує, що добуток модулів чисел a і b дорівнює або a·b , , або −(a·b) , якщо , що доводить розглянуту властивість.

    Модуль приватного від розподілу a на b дорівнює частковому від розподілу модуля числа a на модуль числа b, тобто, . Обґрунтуємо цю властивість модуля. Оскільки приватне дорівнює твору, то. В силу попередньої властивості маємо . Залишилося лише користуватися рівністю , яке справедливо через визначення модуля числа.

    Наступна властивість модуля записується у вигляді нерівності: , a, b і c – довільні дійсні числа. Записане нерівність є ні що інше як нерівність трикутника. Щоб це стало зрозуміло, візьмемо точки A(a), B(b), C(c) на координатній прямій і розглянемо вироджений трикутник АВС, у якого вершини лежать на одній прямій. За визначенням модуля різниці дорівнює довжині відрізка АВ, - Довжині відрізка АС, а - Довжині відрізка СВ. Оскільки довжина будь-якої сторони трикутника не перевищує суму довжин двох інших сторін, то справедлива нерівність , Отже, справедливо і нерівність.

    Щойно доведена нерівність набагато частіше зустрічається у вигляді . Записану нерівність зазвичай розглядають як окрему властивість модуля з формулюванням: « Модуль суми двох чисел не перевищує суму модулів цих чисел». Але нерівність безпосередньо випливає з нерівності , якщо в ньому замість b покласти −b і прийняти c = 0 .

Модуль комплексного числа

Дамо визначення модуля комплексного числа. Нехай нам дано комплексне число, Записане в алгебраїчній формі , де x і y - деякі дійсні числа, що є відповідно дійсну і уявну частини даного комплексного числа z, а - уявна одиниця.

Визначення.

Модулем комплексного числа z=x+i·y називається арифметичний квадратний корінь із суми квадратів дійсної та уявної частини даного комплексного числа.

Модуль комплексного числа z позначається як , тоді озвучене визначення модуля комплексного числа може бути записане у вигляді .

Дане визначення дозволяє обчислити модуль будь-якого комплексного числа в формі алгебри запису. Наприклад обчислимо модуль комплексного числа. У цьому прикладі дійсна частина комплексного числа дорівнює, а уявна – мінус чотирьом. Тоді за визначенням модуля комплексного числа маємо .

Геометричну інтерпретацію модуля комплексного числа можна дати через відстань за аналогією з геометричною інтерпретацією модуля дійсного числа.

Визначення.

Модуль комплексного числа z – це відстань від початку комплексної площини до точки, що відповідає числу z у цій площині.

По теоремі Піфагора відстань від точки O до точки з координатами (x, y) перебуває як , тому, , де . Отже, останнє визначення модуля комплексного числа узгоджується з першим.

Дане визначення також дозволяє відразу вказати, чому дорівнює модуль комплексного числа z якщо воно записано в тригонометричній формі як або в показовій формі. Тут. Наприклад, модуль комплексного числа дорівнює 5, а модуль комплексного числа дорівнює.

Можна також помітити, що добуток комплексного числа на комплексно пов'язане число дає суму квадратів дійсної та уявної частини. Справді, . Отримана рівність дозволяє надати ще одне визначення модуля комплексного числа.

Визначення.

Модуль комплексного числа z – це арифметичний квадратний корінь із добутку цього числа та числа, комплексно пов'язаного з ним, тобто .

На закінчення відзначимо, що це властивості модуля, сформульовані у відповідному пункті, справедливі й у комплексних чисел.

Список літератури.

  • Віленкін Н.Я. та ін Математика. 6 клас: підручник для загальноосвітніх закладів.
  • Макарічев Ю.М., Міндюк Н.Г., Нешков К.І., Суворова С.Б. Алгебра: підручник для 8 кл. загальноосвітніх установ.
  • Лунц Г.Л., Ельсгольц Л.Е. Функції комплексного змінного: підручник для вишів.
  • Привалов І.І. Введення у теорію функцій комплексного змінного.

Модуль – це абсолютна величина висловлювання. Щоб хоч якось позначити модуль, прийнято використовувати прямі дужки. Те значення, яке укладено в рівних дужках, є тим значенням, яке взято по модулю. Процес вирішення будь-якого модуля полягає в розкритті тих самих прямих дужок, які математичною мовою називаються модульними дужками. Їхнє розкриття відбувається за певним рядом правил. Також, у порядку розв'язання модулів, знаходяться й безлічі значень тих виразів, які перебували у модульних дужках. У більшості випадків, модуль розкривається таким способом, що вираз, який був підмодульним, отримує і позитивні, і негативні значення, серед яких також значення нуль. Якщо відштовхуватися від встановлених властивостей модуля, то в процесі складаються різні рівняння або нерівності від вихідного виразу, які потім необхідно вирішити. Розберемося з тим, як вирішувати модулі.

Процес вирішення

Рішення модуля починається із запису вихідного рівняння з модулем. Щоб відповісти на питання про те, як розв'язувати рівняння з модулем, необхідно розкрити його повністю. Для вирішення такого рівняння модуль розкривається. Усі модульні вирази мають бути розглянуті. Слід визначити при яких значеннях невідомих величин, що входять до його складу, модульний вираз у дужках перетворюється на нуль. Для того щоб це зробити, достатньо прирівняти вираз у модульних дужках до нуля, а потім вирахувати рішення рівняння, що утворилося. Знайдені значення слід зафіксувати. У такий же спосіб потрібно визначити ще й значення всіх невідомих змінних для всіх модулів у даному рівнянні. Далі необхідно зайнятися визначенням та розглядом всіх випадків існування змінних у виразах, коли вони відмінні від значення нуль. Для цього потрібно записати деяку систему з нерівностей відповідно до всіх модулів у вихідній нерівності. Нерівності повинні бути складені так, щоб вони охоплювали всі існуючі та можливі значення для змінної, які знаходять на числовій прямій. Потім потрібно накреслити для візуалізації цю саму числову пряму, де надалі відкласти всі отримані значення.

Майже все зараз можна зробити в інтернеті. Не виняток з правил і модуль. Вирішити його можна на одному з численних сучасних ресурсів. Всі значення змінної, які знаходяться в нульовому модулі, будуть особливим обмеженням, яке буде використане в процесі вирішення модульного рівняння. У вихідному рівнянні потрібно розкрити всі наявні модульні дужки, при цьому, змінюючи знак виразу, таким чином, щоб значення змінної, що шукається, збігалися з тими значеннями, які видно на числовій прямій. Отримане рівняння необхідно розв'язати. Те значення змінної, яке буде отримано в ході розв'язання рівняння, потрібно перевіряти на обмеження, яке задано самим модулем. Якщо значення змінної повністю задовольняє умова, воно є правильним. Усі коріння, які будуть отримані в ході рішення рівняння, але не підходитимуть за обмеженнями, мають бути відкинуті.

Одна з найскладніших тем для учнів – це розв'язання рівнянь, що містять змінну під знаком модуля. Давайте розберемося для початку з чим це пов'язано? Чому, наприклад, квадратні рівняння більшість дітей клацає як горішки, а з таким далеко не найскладнішим поняттям, як модуль, має стільки проблем?

На мою думку, всі ці складності пов'язані з відсутністю чітко сформульованих правил для вирішення рівнянь із модулем. Так, вирішуючи квадратне рівняння, учень точно знає, що йому потрібно спочатку застосовувати формулу дискримінанта, а потім формули коріння квадратного рівняння. А що робити, якщо на рівнянні зустрівся модуль? Постараємося чітко описати необхідний план дій у разі, коли рівняння містить невідому під знаком модуля. До кожного випадку наведемо кілька прикладів.

Але для початку згадаємо визначення модуля. Отже, модулем числа aназивається саме це число, якщо aневід'ємно і -a, якщо число aменьше нуля. Записати це можна так:

|a| = a, якщо a ≥ 0 та |a| = -a, якщо a< 0

Говорячи про геометричний сенс модуля, слід пам'ятати, що кожному дійсному числу відповідає певна точка на числовій осі - її до оординату. Так ось, модулем або абсолютною величиною числа називається відстань від цієї точки до початку відліку числової осі. Відстань завжди задається позитивним числом. Таким чином, модуль будь-якого негативного числа є позитивним. До речі, навіть на цьому етапі багато учнів починають плутатися. У модулі може стояти будь-яке число, а ось результат застосування модуля завжди число позитивне.

Тепер перейдемо безпосередньо до розв'язання рівнянь.

1. Розглянемо рівняння виду | = с, де с – дійсне число. Це рівняння можна вирішити за допомогою модуля.

Всі дійсні числа розіб'ємо на три групи: ті, що більше за нуль, ті, що менше за нуль, і третя група – це число 0. Запишемо рішення у вигляді схеми:

(±c, якщо з > 0

Якщо | x | = c, то x = (0, якщо с = 0

(немає коріння, якщо з< 0

1) | = 5, т.к. 5> 0, то x = ±5;

2) | = -5 т.к. -5< 0, то уравнение не имеет корней;

3) | = 0 то x = 0.

2. Рівняння виду | f (x) | = b де b > 0. Для вирішення даного рівняння необхідно позбутися модуля. Робимо це: f(x) = b чи f(x) = -b. Тепер необхідно вирішити окремо кожне із отриманих рівнянь. Якщо у вихідному рівнянні b< 0, решений не будет.

1) | x + 2 | = 4, т.к. 4 > 0, то

x + 2 = 4 або x + 2 = -4

2) | x 2 – 5 | = 11, т.к. 11 > 0, то

x 2 - 5 = 11 або x 2 - 5 = -11

x 2 = 16 x 2 = -6

x = ± 4 немає коріння

3) | x 2 - 5x | = -8, т.к. -8< 0, то уравнение не имеет корней.

3. Рівняння виду | f (x) | = g(x). За змістом модуля таке рівняння матиме рішення, якщо його права частина більша чи дорівнює нулю, тобто. g(x) ≥ 0. Тоді матимемо:

f(x) = g(x)або f(x) = -g(x).

1) | 2x - 1 | = 5x – 10. Це рівняння матиме коріння, якщо 5x – 10 ≥ 0. Саме з цього і починають розв'язання таких рівнянь.

1. О.Д.З. 5x – 10 ≥ 0

2. Рішення:

2x - 1 = 5x - 10 або 2x - 1 = - (5x - 10)

3. Об'єднуємо О.Д.З. та рішення, отримуємо:

Корінь x = 11/7 не підходить за О.Д.З., він менше 2, а x = 3 цій умові задовольняє.

Відповідь: x = 3

2) | x - 1 | = 1 - х 2 .

1. О.Д.З. 1 – x 2 ≥ 0. Розв'яжемо методом інтервалів дану нерівність:

(1 – x)(1 + x) ≥ 0

2. Рішення:

x - 1 = 1 - x 2 або x - 1 = - (1 - x 2)

x 2 + x - 2 = 0 x 2 - x = 0

x = -2 або x = 1 x = 0 або x = 1

3. Об'єднуємо рішення та О.Д.З.:

Підходять лише коріння x = 1 та x = 0.

Відповідь: x=0, x=1.

4. Рівняння виду | f (x) | = | g (x) |. Таке рівняння дорівнює двом наступним рівнянням f(x) = g(x) або f(x) = -g(x).

1) | x 2 - 5x + 7 | = | 2x - 5 |. Це рівняння рівносильне двом наступним:

x 2 - 5x + 7 = 2x - 5 або x 2 - 5x +7 = -2x + 5

x 2 - 7x + 12 = 0 x 2 - 3x + 2 = 0

x = 3 або x = 4 x = 2 або x = 1

Відповідь: x = 1, x = 2, x = 3, x = 4.

5. Рівняння, які вирішуються шляхом підстановки (заміни змінної). Даний метод рішення найпростіше пояснити на конкретному прикладі. Так, нехай дано квадратне рівняння з модулем:

x 2 – 6|x| + 5 = 0. За якістю модуля x 2 = |x| 2 , тому рівняння можна переписати так:

|х| 2 - 6 | x | + 5 = 0. Зробимо заміну | = t ≥ 0, тоді матимемо:

t 2 – 6t + 5 = 0. Вирішуючи дане рівняння, отримуємо, що t = 1 або t = 5. Повернімося до заміни:

|х| = 1 чи |x| = 5

x = ±1 x = ± 5

Відповідь: x=-5, x=-1, x=1, x=5.

Розглянемо ще один приклад:

x 2 + | – 2 = 0. За якістю модуля x 2 = |x| 2 , тому

|х| 2+ |x| - 2 = 0. Зробимо заміну | x | = t ≥ 0 тоді:

t 2 + t – 2 = 0. Вирішуючи дане рівняння, отримуємо, t = -2 або t = 1. Повернемося до заміни:

|х| = -2 чи |x| = 1

Немає коріння x = ± 1

Відповідь: x=-1, x=1.

6. Ще один вид рівнянь - рівняння зі "складним" модулем. До таких рівнянь відносяться рівняння, в яких є модулі в модулі. Рівняння цього виду можна вирішувати, застосовуючи властивості модуля.

1) |3 – |x|| = 4. Діятимемо так само, як і в рівняннях другого типу. Т.к. 4 > 0, то отримаємо два рівняння:

3 - | x | = 4 чи 3 – |x| = -4.

Тепер виразимо у кожному рівнянні модуль х, тоді | = -1 чи |x| = 7.

Вирішуємо кожне з отриманих рівнянь. У першому рівнянні немає коріння, т.к. -1< 0, а во втором x = ±7.

Відповідь x=-7, x=7.

2) | 3 + | x + 1 | | = 5. Вирішуємо це рівняння аналогічним чином:

3 + | x + 1 | = 5 чи 3 + |x + 1| = -5

|х + 1| = 2 | x + 1 | = -8

x + 1 = 2 або x + 1 = -2. Немає коріння.

Відповідь: x=-3, x=1.

Існує ще й універсальний метод розв'язання рівнянь із модулем. Це спосіб інтервалів. Але ми його розглянемо надалі.

blog.сайт, при повному або частковому копіюванні матеріалу посилання на першоджерело обов'язкове.

Інструкція

Якщо модуль представлений як безперервної функції, то значення її аргументу то, можливо як позитивним, і негативним: |х| = х, х ≥ 0; |х| = - х, х

Модуль нулю, а модуль будь-якого позитивного числа – йому. Якщо аргумент негативний, після розкриття дужок його знак змінюється з мінуса на плюс. З цього випливає висновок, що модулі протилежних рівні: |-х| = |х| = х.


Модуль комплексного числа перебуває за такою формулою: |a| = √b² + c², а |a + b| ≤ |a| + | b |. Якщо в аргументі є у вигляді множника позитивне число, то його можна винести за знак дужки, наприклад: |4*b| = 4 * | b |.



Якщо аргумент представлений у вигляді складного числа, то зручності обчислень допускається порядку членів висловлювання, укладеного в прямокутні дужки: |2-3| = | 3-2 | = 3-2 = 1, оскільки (2-3) менше від нуля.


Зведений у міру аргумент одночасно перебуває під знаком кореня того ж порядку – він вирішується за допомогою: √a² = |a| = ±a.


Якщо перед вами завдання, в якому не зазначено умова розкриття дужок модуля, позбавлятися їх не потрібно – це і буде кінцевий результат. А якщо потрібно їх розкрити, необхідно вказати знак ±. Наприклад, потрібно знайти значення виразу √(2*(4-b))². Його рішення виглядає так: √(2 * (4-b)) ² = |2 * (4-b)| = 2 * | 4-b |. Оскільки знак виразу 4-b невідомий, його потрібно залишити в дужках. Якщо додати додаткову умову, наприклад, |4-b| >

Модуль нуля дорівнює нулю, а модуль будь-якого позитивного числа – йому самому. Якщо аргумент негативний, після розкриття дужок його знак змінюється з мінуса на плюс. З цього випливає висновок, що модулі протилежних чисел рівні: |-х| = |х| = х.

Модуль комплексного числа перебуває за такою формулою: |a| = √b² + c², а |a + b| ≤ |a| + | b |. Якщо в аргументі є у вигляді множника ціле позитивне число, то його можна винести за знак дужки, наприклад: |4*b| = 4 * | b |.

Негативним модуль не може, тому будь-яке негативне число перетворюється на позитивне: |-x| = x, |-2 | = 2, |-1/7 | = 1 / 7, | -2,5 | = 2,5.

Якщо аргумент представлений у вигляді складного числа, то зручності обчислень допускається зміна порядку членів висловлювання, укладеного в прямокутні дужки: |2-3| = | 3-2 | = 3-2 = 1, оскільки (2-3) менше від нуля.

Якщо перед вами завдання, в якому не зазначено умова розкриття дужок модуля, позбавлятися їх не потрібно – це і буде кінцевий результат. А якщо потрібно їх розкрити, необхідно вказати знак ±. Наприклад, потрібно знайти значення виразу √(2*(4-b))². Його рішення виглядає так: √(2 * (4-b)) ² = |2 * (4-b)| = 2 * | 4-b |. Оскільки знак виразу 4-b невідомий, його потрібно залишити в дужках. Якщо додати додаткову умову, наприклад, |4-b| > 0, то результаті вийде 2 * |4-b| = 2 * (4 - b). Як невідомий елемент також може бути задане конкретне число, яке слід брати до уваги, т.к. воно впливатиме на знак висловлювання.

Модуль - одна з тих речей, про які начебто всі чули, але насправді ніхто нормально не розуміє. Тому сьогодні буде великий урок, присвячений вирішенню рівнянь із модулями.

Відразу скажу: урок буде нескладним. І взагалі модулі взагалі тема відносно нескладна. «Так, звичайно, нескладна! У мене від неї мозок розривається! - скажуть багато учнів, але всі ці розриви мозку відбуваються через те, що у більшості людей у ​​голові не знання, а якась хрень. І мета цього уроку - перетворити хрень на знання.

Трохи теорії

Тож поїхали. Почнемо з найважливішого: що таке модуль? Нагадаю, що модуль числа - це просто те саме число, але взяте без знаку "мінус". Тобто, наприклад, $ \ left | -5 \right | = 5 $. Або $ \ left | -129,5 \ right | = 129,5 $.

Отак усе просто? Да просто. А чому тоді дорівнює модуль позитивного числа? Тут ще простіше: модуль позитивного числа дорівнює самому цьому числу: $ \ left | 5 \right | = 5 $; $\left| 129,5 \ right | = 129,5 $ і т.д.

Виходить цікава річ: різні числа можуть мати той самий модуль. Наприклад: $ \ left | -5 \right|=\left| 5 \right | = 5 $; $\left| -129,5 \right|=\left| 129,5 \ right | = 129,5 $. Неважко помітити, що це числа, у яких модулі однакові: ці числа протилежні. Отже, відзначимо собі, що модулі протилежних чисел рівні:

\[\left| -a \right|=\left| a \right|\]

Ще один важливий факт: модуль ніколи не буває негативним. Хоч би яке число ми взяли — хоч позитивне, хоч негативне — його модуль завжди виявляється позитивним (або в крайньому випадку нулем). Саме тому модуль часто називають абсолютною величиною числа.

Крім того, якщо об'єднати визначення модуля для позитивного та негативного числа, то отримаємо глобальне визначення модуля для всіх чисел. А саме: модуль числа дорівнює самому числу, якщо число позитивне (або нуль), або дорівнює протилежному числу, якщо число негативне. Можна записати це у вигляді формули:

Ще є модуль нуля, але він завжди дорівнює нулю. Крім того, нуль однина, Яке не має протилежного.

Таким чином, якщо розглянути функцію $ y = \ left | x \right|$ і спробувати намалювати її графік, то вийде така «галка»:

Графік модуля та приклад вирішення рівняння

З цієї картинки відразу видно, що $ \ left | -m \right|=\left| m \right|$, а графік модуля ніколи не опускається нижче за осю абсцис. Але це ще не все: червоною лінією відзначена пряма $y=a$, яка при позитивних $a$ дає нам відразу два корені: $((x)_(1))$ і $((x)_(2)) $, але про це ми поговоримо пізніше.:)

Крім чисто алгебраїчного визначення є геометричне. Допустимо, є дві точки на числовій прямій: $((x)_(1))$ і $((x)_(2))$. І тут вираз $\left| ((x)_(1))-((x)_(2)) \right|$ - це просто відстань між зазначеними точками. Або, якщо завгодно, довжина відрізка, що з'єднує ці точки:

Модуль — це відстань між точками на числовій прямій

З цього визначення також випливає, що модуль завжди негативний. Але вистачить визначень та теорії — перейдемо до справжніх рівнянь.

Основна формула

Ну гаразд, з визначенням розібралися. Але легше від цього не стало. Як вирішувати рівняння, що містять цей самий модуль?

Спокій тільки спокій. Почнемо з найпростіших речей. Розглянемо щось типу такого:

\[\left| x \right|=3\]

Отже, модуль$x$ дорівнює 3. Чому може дорівнювати $x$? Ну, судячи з визначення, нас цілком влаштує $x=3$. Дійсно:

\[\left| 3 \right|=3\]

Чи є інші числа? Кеп ніби натякає, що є. Наприклад, $ x = -3 $ - для нього теж $ \ left | -3 \right | = 3 $, тобто. необхідну рівність виконується.

То, може, якщо пошукати, подумати, ми знайдемо ще числа? А ось обломтеся: більше чисел немає. Рівняння $ \ left | x \right|=3$ має лише два корені: $x=3$ і $x=-3$.

Тепер трохи ускладнимо завдання. Нехай замість змінної $x$ під знаком модуля тусується функція $f\left(x \right)$, а праворуч замість трійки поставимо довільне число $a$. Отримаємо рівняння:

\[\left| f\left(x \right) \right|=a\]

Ну, і як таке вирішувати? Нагадаю: $f\left(x \right)$ - довільна функція, $a$ - будь-яке число. Тобто. взагалі будь-яке! Наприклад:

\[\left| 2x+1 \right|=5\]

\[\left| 10x-5 \right|=-65\]

Звернімо увагу на друге рівняння. Про нього відразу можна сказати: коріння в нього немає. Чому? Все правильно: тому що в ньому потрібно, щоб модуль дорівнював негативному числу, чого ніколи не буває, оскільки ми вже знаємо, що модуль - число завжди позитивне або в крайньому випадку нуль.

А ось із першим рівнянням все веселіше. Тут два варіанти: або під знаком модуля стоїть позитивний вираз, і тоді $ \ left | 2x+1 \right|=2x+1$, або це вираз все-таки негативне, і тоді $\left| 2x+1 \right|=-\left(2x+1 \right)=-2x-1$. У першому випадку наше рівняння перепишеться так:

\[\left| 2x+1 \right|=5\Rightarrow 2x+1=5\]

І раптово виходить, що підмодульний вираз $2x+1$ дійсно позитивний - він дорівнює числу 5. Тобто. ми можемо спокійно вирішувати це рівняння - отриманий корінь буде шматком відповіді:

Особливо недовірливі можуть спробувати підставити знайдений корінь у вихідне рівняння та переконатися, що справді під модулем буде позитивне число.

Тепер розберемо випадок негативного підмодульного виразу:

\[\left\( \begin(align)& \left| 2x+1 \right|=5 \\& 2x+1 \lt 0 \\\end(align) \right.\Rightarrow -2x-1=5 \Rightarrow 2x+1=-5\]

Опа! Знову все чітко: ми припустили, що $2x+1 \lt 0$, і в результаті отримали, що $2x+1=-5$ — це вираз менше нуля. Вирішуємо отримане рівняння, при цьому вже точно знаючи, що знайдений корінь нас влаштує:

Разом ми знову отримали дві відповіді: $ x = 2 $ і $ x = 3 $. Так, обсяг обчислень виявився трохи більшим, ніж у вже простому рівнянні $\left| x \right|=3$, але нічого не змінилося. То, може, існує якийсь універсальний алгоритм?

Так, такий алгоритм існує. І зараз ми його розберемо.

Звільнення від знаку модуля

Нехай нам дано рівняння $ \ left | f\left(x \right) \right|=a$, причому $a\ge 0$ (інакше, як ми вже знаємо, коріння немає). Тоді можна позбавитися знака модуля за таким правилом:

\[\left| f\left(x \right) \right|=a\Rightarrow f\left(x \right)=\pm a\]

Таким чином, наше рівняння із модулем розпадається на два, але вже без модуля. Ось і вся розробка! Спробуємо вирішити кілька рівнянь. Почнемо ось із такого

\[\left| 5x+4 \right|=10\Rightarrow 5x+4=\pm 10\]

Окремо розглянемо, коли справа стоїть десятка з плюсом, і окремо коли з мінусом. Маємо:

\[\begin(align)& 5x+4=10\Rightarrow 5x=6\Rightarrow x=\frac(6)(5)=1,2; \\& 5x+4=-10\Rightarrow 5x=-14\Rightarrow x=-\frac(14)(5)=-2,8. \\end(align)\]

От і все! Одержали два корені: $ x = 1,2 $ і $ x = -2,8 $. Все рішення зайняло буквально два рядки.

Ок, не питання, давайте розглянемо щось трохи серйозніше:

\[\left| 7-5x \right|=13\]

Знову розкриваємо модуль з плюсом та мінусом:

\[\begin(align)& 7-5x=13\Rightarrow -5x=6\Rightarrow x=-\frac(6)(5)=-1,2; \\& 7-5x=-13\Rightarrow -5x=-20\Rightarrow x=4. \\end(align)\]

Знову пара рядків - і відповідь готова! Як я й казав, у модулях немає нічого складного. Потрібно лише запам'ятати кілька правил. Тому йдемо далі і приступаємо з справді складнішим завданням.

Випадок змінної правої частини

А тепер розглянемо таке рівняння:

\[\left| 3x-2 \right|=2x\]

Це рівняння принципово відрізняється від попередніх. Чим? А тим, що праворуч від знака рівності коштує вираз $2x$ — і ми не можемо заздалегідь знати, чи позитивне воно, чи негативне.

Як бути у такому разі? По-перше, треба раз і назавжди зрозуміти, що якщо права частина рівняння виявиться негативною, то рівняння не матиме коріння— ми вже знаємо, що модуль не може дорівнювати негативному числу.

А по-друге, якщо права частина таки позитивна (або дорівнює нулю), то можна діяти так само, як раніше: просто розкрити модуль окремо зі знаком «плюс» і окремо — зі знаком «мінус».

Таким чином, сформулюємо правило для довільних функцій $f\left(x \right)$ і $g\left(x \right)$ :

\[\left| f\left(x \right) \right|=g\left(x \right)\Rightarrow \left\( \begin(align)& f\left(x \right)=\pm g\left(x \right) ), \\& g\left(x \right)\ge 0. \\\end(align) \right.\]

Щодо нашого рівняння отримаємо:

\[\left| 3x-2 \right|=2x\Rightarrow \left\( \begin(align)& 3x-2=\pm 2x, \\& 2x\ge 0. \\\end(align) \right.\]

Ну, з вимогою $2x\ge 0$ ми якось упораємося. Зрештою, можна тупо підставити коріння, яке ми отримаємо з першого рівняння, і перевірити: чи виконується нерівність чи ні.

Тому розв'яжемо саме рівняння:

\[\begin(align)& 3x-2=2\Rightarrow 3x=4\Rightarrow x=\frac(4)(3); \\& 3x-2=-2\Rightarrow 3x=0\Rightarrow x=0. \\end(align)\]

Ну і яке з цих двох коренів задовольняє вимогу $2x\ge 0$? Так обоє! Тому у відповідь підуть два числа: $ x = (4) / (3) \; $ і $ x = 0 $. Ось і все рішення.

Підозрюю, що хтось із учнів уже почав нудьгувати? Що ж, розглянемо ще складніше рівняння:

\[\left| ((x)^(3))-3((x)^(2))+x \right|=x-((x)^(3))\]

Хоч воно і виглядає злісно, ​​по факту це все те саме рівняння виду «модуль дорівнює функції»:

\[\left| f\left(x \right) \right|=g\left(x \right)\]

І вирішується воно так само:

\[\left| ((x)^(3))-3((x)^(2))+x \right|=x-((x)^(3))\Rightarrow \left\( \begin(align)& ( (x)^(3))-3((x)^(2))+x=\pm \left(x-((x)^(3)) \right), \\& x-((x )^(3))\ge 0. \\\end(align) \right.\]

З нерівністю ми потім розберемося — воно якесь надто злісне (насправді просте, але ми його вирішувати не будемо). Поки що краще займемося отриманими рівняннями. Розглянемо перший випадок – це коли модуль розкривається зі знаком «плюс»:

\[((x)^(3))-3((x)^(2))+x=x-((x)^(3))\]

Ну, тут і їжу зрозуміло, що потрібно все зібрати зліва, навести подібні і подивитися, що вийде. А вийде ось що:

\[\begin(align)& ((x)^(3))-3((x)^(2))+x=x-((x)^(3)); \\& 2((x)^(3))-3((x)^(2))=0; \\end(align)\]

Виносимо загальний множник $((x)^(2))$ за дужку і отримуємо дуже просте рівняння:

\[((x)^(2))\left(2x-3 \right)=0\Rightarrow \left[ \begin(align)& ((x)^(2))=0 \\& 2x-3 =0 \\\end(align) \right.\]

\[((x)_(1))=0;\quad ((x)_(2))=\frac(3)(2)=1,5.\]

Тут ми користувалися важливою властивістю твору, заради якого ми й розкладали вихідний багаточлен на множники: твір дорівнює нулю, коли хоча б один із множників дорівнює нулю.

Тепер так само розберемося з другим рівнянням, що виходить при розкритті модуля зі знаком «мінус»:

\[\begin(align)& ((x)^(3))-3((x)^(2))+x=-\left(x-((x)^(3)) \right); \\& ((x)^(3))-3((x)^(2))+x=-x+((x)^(3)); \\& -3((x)^(2))+2x=0; \\& x\left(-3x+2 \right)=0. \\end(align)\]

Знову те саме: твір дорівнює нулю, коли дорівнює нулю хоча б один із множників. Маємо:

\[\left[ \begin(align)& x=0 \\& -3x+2=0 \\\end(align) \right.\]

Ну от ми отримали три корені: $ x = 0 $, $ x = 1,5 $ і $ x = (2) / (3) \; Ну і що з цього набору піде у відповідь? Для цього пригадаємо, що ми маємо додаткове обмеження у вигляді нерівності:

Як врахувати цю вимогу? Так просто підставимо знайдене коріння і перевіримо: виконується нерівність при цих $x$ чи ні. Маємо:

\[\begin(align)& x=0\Rightarrow x-((x)^(3))=0-0=0\ge 0; \\& x=1,5\Rightarrow x-((x)^(3))=1,5-((1,5)^(3)) \lt 0; \\& x=\frac(2)(3)\Rightarrow x-((x)^(3))=\frac(2)(3)-\frac(8)(27)=\frac(10) (27) ge 0; \\end(align)\]

Таким чином, корінь $ x = 1,5 $ нас не влаштовує. І у відповідь підуть лише два корені:

\[((x)_(1))=0;\quad ((x)_(2))=\frac(2)(3).\]

Як бачите, навіть у цьому випадку нічого складного не було – рівняння з модулями завжди вирішуються за алгоритмом. Потрібно лише добре розумітися на багаточленах і нерівностях. Тому переходимо до складніших завдань – там уже буде не один, а два модулі.

Рівняння з двома модулями

Досі ми вивчали лише найпростіші рівняння — там був один модуль і ще щось. Це "щось ще" ми відправляли в іншу частину нерівності, подалі від модуля, щоб у результаті все звелося до рівняння виду $ \ left | f\left(x \right) \right|=g\left(x \right)$ або навіть більш простому $\left| f\left(x \right) \right|=a$.

Але дитячий садок закінчився — настав час розглянути щось серйозніше. Почнемо з рівнянь такого типу:

\[\left| f\left(x \right) \right|=\left| g\left(x \right) \right|\]

Це рівняння виду "модуль дорівнює модулю". Принципово важливим моментом є відсутність інших доданків та множників: тільки один модуль ліворуч, ще один модуль праворуч – і нічого більше.

Хтось зараз подумає, що такі рівняння вирішуються складніше, ніж те, що ми досі вивчали. А ось і ні: ці рівняння вирішуються навіть найпростіше. Ось формула:

\[\left| f\left(x \right) \right|=\left| g\left(x \right) \right|\Rightarrow f\left(x \right)=\pm g\left(x \right)\]

Усе! Ми просто прирівнюємо підмодульні вирази, ставлячи перед одним із них знак «плюс-мінус». А потім вирішуємо отримані два рівняння - і коріння готове! Жодних додаткових обмежень, жодних нерівностей тощо. Все дуже просто.

Давайте спробуємо вирішувати таке завдання:

\[\left| 2x+3 \right|=\left| 2x-7 \right|\]

Елементарно, Ватсон! Розкриваємо модулі:

\[\left| 2x+3 \right|=\left| 2x-7 \right|\Rightarrow 2x+3=\pm \left(2x-7 \right)\]

Розглянемо окремо кожен випадок:

\[\begin(align)& 2x+3=2x-7\Rightarrow 3=-7\Rightarrow \emptyset ; \\& 2x+3=-\left(2x-7 \right)\Rightarrow 2x+3=-2x+7. \\end(align)\]

У першому рівнянні коріння немає. Тому що коли це $3=-7$? За яких значень $x$? «Який ще нафіг $x$? Ти обкурився? Там взагалі немає $x$» - скажете ви. І будете праві. Ми здобули рівність, що не залежить від змінної $x$, і при цьому сама рівність — неправильна. Тому і немає коріння.

З другим рівнянням все трохи цікавіше, але теж дуже і дуже просто:

Як бачимо, все вирішилося буквально в пару рядків - іншого від лінійного рівняння ми й не очікували.

У результаті остаточна відповідь: $ x = 1 $.

Ну як? Важко? Звичайно, ні. Спробуємо щось ще:

\[\left| x-1 \right|=\left| ((x)^(2))-3x+2 \right|\]

Знову у нас рівняння виду $ \ left | f\left(x \right) \right|=\left| g\left(x \right) \right|$. Тому одразу переписуємо його, розкриваючи знак модуля:

\[((x)^(2))-3x+2=\pm \left(x-1 \right)\]

Можливо, хтось зараз запитає: «Гей, що за маячня? Чому «плюс-мінус» стоїть у правого вираження, а не у лівого? Спокійно зараз все поясню. По-хорошому ми повинні були переписати наше рівняння так:

Потім потрібно розкрити дужки, перенести всі доданки в один бік від знака рівності (оскільки рівняння, очевидно, в обох випадках буде квадратним), та й далі відшукати коріння. Але погодьтеся: коли «плюс-мінус» стоїть перед трьома доданками (особливо коли один із цих доданків — квадратний вираз), це якось складніше виглядає, ніж ситуація, коли «плюс-мінус» стоїть лише перед двома доданками.

Але ж ніщо не заважає нам переписати вихідне рівняння так:

\[\left| x-1 \right|=\left| ((x)^(2))-3x+2 \right|\Rightarrow \left| ((x)^(2))-3x+2 \right|=\left| x-1 \right|\]

Що сталося? Та нічого особливого: просто поміняли ліву та праву частину місцями. Дрібниця, яка зрештою трохи спростить нам життя.:)

Загалом вирішуємо це рівняння, розглядаючи варіанти з плюсом і з мінусом:

\[\begin(align)& ((x)^(2))-3x+2=x-1\Rightarrow ((x)^(2))-4x+3=0; \\& ((x)^(2))-3x+2=-\left(x-1 \right)\Rightarrow ((x)^(2))-2x+1=0. \\end(align)\]

Перше рівняння має коріння $x=3$ та $x=1$. Друге взагалі є точним квадратом:

\[((x)^(2))-2x+1=((\left(x-1 \right))^(2))\]

Тому має єдиний корінь: $x=1$. Але це коріння ми вже отримували раніше. Таким чином, у підсумкову відповідь підуть лише два числа:

\[((x)_(1))=3;\quad ((x)_(2))=1.\]

Місія виконана! Можна взяти з полиці та з'їсти пиріжок. Там їх 2, ваш середній.

Важливе зауваження. Наявність однакового коріння при різних варіантахРозкриття модуля означає, що вихідні багаточлени розкладаються на множники, і серед цих множників обов'язково буде загальним. Дійсно:

\[\begin(align)& \left| x-1 \right|=\left| ((x)^(2))-3x+2 \right|; \\& \left| x-1 \right|=\left| \left(x-1 \right)\left(x-2 \right) \right|. \\end(align)\]

Одна з властивостей модуля: $ \ left | acdot b \right|=\left| a \right|\cdot \left| b \right|$ (тобто модуль твору дорівнює добутку модулів), тому вихідне рівняння можна переписати так:

\[\left| x-1 \right|=\left| x-1 \right|\cdot \left| x-2 \right|\]

Як бачимо, у нас справді виник спільний множник. Тепер, якщо зібрати всі модулі з одного боку, можна винести цей множник за дужку:

\[\begin(align)& \left| x-1 \right|=\left| x-1 \right|\cdot \left| x-2 \right|; \\& \left| x-1 \right|-\left| x-1 \right|\cdot \left| x-2 \right|=0; \\& \left| x-1 \right|\cdot \left(1-\left| x-2 \right| \right)=0. \\end(align)\]

Ну а тепер згадуємо, що добуток дорівнює нулю, коли хоча б один із множників дорівнює нулю:

\[\left[ \begin(align)& \left| x-1 \right|=0, \\& \left| x-2 \right|=1. \\\end(align) \right.\]

Таким чином, вихідне рівняння з двома модулями звелося до двох найпростіших рівнянь, про які ми говорили на початку уроку. Такі рівняння вирішуються буквально в пару рядків.

Дане зауваження, можливо, здасться надмірно складним та незастосовним на практиці. Однак насправді вам можуть зустрітися куди складніші завдання, ніж ті, що ми сьогодні розуміємо. Вони модулі можуть комбінуватися з многочленами, арифметичними корінням, логарифмами тощо. І в таких ситуаціях можливість знизити загальний рівень рівняння шляхом винесення чого-небудь за дужку може виявитися дуже і дуже доречним.

Тепер хотілося б розібрати ще одне рівняння, яке на перший погляд може здатися маревним. На ньому «залипають» багато учнів, навіть ті, які вважають, що добре розібралися в модулях.

Проте це рівняння вирішується навіть простіше, ніж те, що ми розглядали раніше. І якщо ви зрозумієте чомусь, то отримаєте ще один прийом для швидкого вирішення рівнянь з модулями.

Отже, рівняння:

\[\left| x-((x)^(3)) \right|+\left| ((x)^(2))+x-2 \right|=0\]

Ні, це не друкарська помилка: між модулями саме плюс. І нам потрібно знайти, за яких $x$ сума двох модулів дорівнює нулю.:)

У чому взагалі проблема? А проблема в тому, що кожен модуль — позитивне число, або в крайньому випадку нуль. А що буде, якщо скласти два позитивні числа? Очевидно, знову позитивне число:

\[\begin(align)& 5+7=12 \gt 0; \& 0,004+0,0001=0,0041 \gt 0; \\& 5+0=5 \gt 0. \\\end(align)\]

Останній рядок може наштовхнути на думку: єдиний випадок, коли сума модулів дорівнює нулю - це якщо кожен модуль дорівнюватиме нулю:

\[\left| x-((x)^(3)) \right|+\left| ((x)^(2))+x-2 \right|=0\Rightarrow \left\( \begin(align)& \left| x-((x)^(3)) \right|=0, \\& \left|((x)^(2))+x-2 \right|=0.\\\end(align) \right.\]

А коли модуль дорівнює нулю? Тільки в одному випадку - коли підмодульний вираз дорівнює нулю:

\[((x)^(2))+x-2=0\Rightarrow \left(x+2 \right)\left(x-1 \right)=0\Rightarrow \left[ \begin(align)& x=-2 \\& x=1 \\\end(align) \right.\]

Таким чином, у нас є три точки, в яких обнулюється перший модуль: 0, 1 та −1; а також дві точки, в яких обнулюється другий модуль: −2 і 1. Однак нам потрібно, щоб обидва модулі обнулялися одночасно, тому серед знайдених чисел потрібно вибрати ті, що входять до обох наборів. Очевидно, таке число лише одне: $x=1$ — це буде остаточною відповіддю.

Метод розщеплення

Що ж, ми вже розглянули купу завдань та вивчили безліч прийомів. Думаєте на цьому все? А ось і ні! Зараз ми розглянемо заключний прийом – і водночас найважливіший. Йтиметься про розщеплення рівнянь із модулем. Про що взагалі йтиметься? Повернімося трохи назад і розглянемо якесь просте рівняння. Наприклад, це:

\[\left| 3x-5 \right|=5-3x\]

В принципі ми вже знаємо, як вирішувати таке рівняння, тому що це стандартна конструкція виду $\left| f\left(x \right) \right|=g\left(x \right)$. Але спробуємо подивитись на це рівняння трохи під іншим кутом. Точніше, розглянемо вираз, що стоїть під знаком модуля. Нагадаю, що модуль будь-якого числа може дорівнювати самому числу, а може бути протилежний цьому числу:

\[\left| a \right|=\left\( \begin(align)& a,\quad a\ge 0, \\& -a,\quad a \lt 0. \\\end(align) \right.\]

Власне, у цій неоднозначності й полягає вся проблема: оскільки число під модулем змінюється (воно залежить від змінної), нам неясно — позитивне чи негативне.

Але що якщо спочатку вимагати, щоб це число було позитивним? Наприклад, вимагаємо, щоб $3x-5 \gt 0$ — у цьому випадку ми гарантовано отримаємо позитивне число під знаком модуля, і цього самого модуля можна повністю позбутися:

Таким чином, наше рівняння перетвориться на лінійне, яке легко вирішується:

Щоправда, всі ці роздуми мають сенс лише за умови $3x-5\gt 0$ — ми самі запровадили цю вимогу, щоб однозначно розкрити модуль. Тому давайте підставимо знайдений $x=\frac(5)(3)$ в цю умову і перевіримо:

Виходить, що з зазначеному значенні $x$ наша вимога не виконується, т.к. вираз виявився рівним нулю, а нам потрібно, щоб воно було строго більше нуля. Журбинка.:(

Але нічого страшного! Є ще варіант $3x-5 \lt 0$. Більше того: є ще й випадок $3x-5=0$ — це також потрібно розглянути, інакше рішення буде неповним. Розглянемо випадок $3x-5 \lt 0$:

Очевидно, що модуль розкриється зі знаком «мінус». Але тоді виникає дивна ситуація: і ліворуч, і праворуч у вихідному рівнянні стирчатиме той самий вираз:

Цікаво, при яких таких $x$ вираз $5-3x$ буде дорівнює виразу $5-3x$? Від таких рівнянь навіть Капітан очевидність подавився б слиною, але ми знаємо: це рівняння є тотожністю, тобто. воно вірне за будь-яких значень змінної!

А це означає, що нас влаштують будь-які $x$. Водночас у нас є обмеження:

Іншими словами, відповіддю буде не якесь окреме число, а цілий інтервал:

Нарешті залишилося розглянути ще один випадок: $3x-5=0$. Тут все просто: під модулем буде нуль, а модуль нуля теж дорівнює нулю (це прямо випливає з визначення):

Але тоді вихідне рівняння $ \ left | 3x-5 \right|=5-3x$ перепишеться так:

Цей корінь ми вже отримували вище, коли розглядали випадок $3x-5\gt 0$. Більше того, це корінь є рішенням рівняння $3x-5=0$ - це обмеження, яке ми самі ж і ввели, щоб обнулити модуль.

Таким чином, крім інтервалу нас влаштує ще й число, що лежить на самому кінці цього інтервалу:


Об'єднання коренів у рівняннях з модулем

Остаточна відповідь: $x\in \left(-\infty ;\frac(5)(3) \right]$ Не дуже звично бачити таку хрень у відповіді до досить простого (по суті - лінійного) рівняння з модулем Що ж, звикайте: в тому і полягає складність модуля, що відповіді в таких рівняннях можуть виявитися абсолютно непередбачуваними.

Куди важливіше інше: ми щойно розібрали універсальний алгоритм розв'язання рівняння з модулем! І складається цей алгоритм із наступних кроків:

  1. Прирівняти кожен модуль, що є у рівнянні, до нуля. Отримаємо кілька рівнянь;
  2. Вирішити всі ці рівняння і відзначити коріння на числовій прямій. В результаті пряма розіб'ється на кілька інтервалів, на кожному з яких всі модулі однозначно розкриваються;
  3. Вирішити вихідне рівняння для кожного інтервалу та об'єднати отримані відповіді.

От і все! Залишається лише одне питання: куди подіти самі корені, отримані на 1-му кроці? Допустимо, у нас вийшло два корені: $ x = 1 $ і $ x = 5 $. Вони розіб'ють числову пряму на 3 шматки:

Розбиття числової осі на інтервали за допомогою точок

Ну, і які тут інтервали? Зрозуміло, що їх три:

  1. Найлівіший: $x \lt 1$ — сама одиниця в інтервал не входить;
  2. Центральний: $1\le x \lt 5$ - ось тут одиниця в інтервал входить, проте не входить п'ятірка;
  3. Найправіший: $x\ge 5$ - п'ятірка входить тільки сюди!

Я гадаю, ви вже зрозуміли закономірність. Кожен інтервал включає лівий кінець і не включає правий.

На перший погляд, такий запис може здатися незручним, нелогічним і взагалі якимось маревним. Але повірте: після невеликого тренування ви виявите, що саме такий підхід є найбільш надійним і при цьому не заважає однозначно розкривати модулі. Краще вже використовувати таку схему, ніж щоразу думати: віддавати лівий/правий кінець у поточний інтервал або перекидати його в наступний.

На цьому урок закінчується. Завантажуйте завдання для самостійного вирішення, тренуйтеся, порівнюйте з відповідями - і побачимося в наступному уроці, який буде присвячений нерівності з модулями.